IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

AC response near percolation threshold: transfer matrix calculation in 2D

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1986 J. Phys. A: Math. Gen. 19 L323
(http://iopscience.iop.org/0305-4470/19/6/005)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 10:11

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/19/6
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J. Phys. A: Math. Gen. 19 (1986) L323-L328. Printed in Great Britain

LETTER TO THE EDITOR

AC response near percolation threshold: transfer matrix
calculation in 2D

A L R Bugt, G S Grestt, M H Cohent and I Webman#§

+ Corparate Research Science Laboratory, Exxon Research and Engineering Co, Annan-
dale, NJ 08801, USA
t Department of Physics, Rutgers University, New Brunswick, NJ 08903, USA

Received 31 December 1985

Abstract. The complex admittivity of a network of resistors and capacitors is calculated
at p. on a square lattice using a transfer matrix. The loss tangent shows a region of
anomalous frequency scaling, with ¢ = 5. Finite-size scaling reveals two crossover frequen-
cies, as expected from duality.

This letter describes an application of the transfer matrix method to calculating the
complex impedance of an electrical network near its percolation threshoid. A transfer
matrix was previously used to calculate the static {Dc) conductance of a resistor
network by Derrida and Vannimenus (1982). Subsequent applications followed
(Herrmann et al 1984, Zabolitzky 1984, Saleur and Derrida 1985). These determined
the ‘superconductivity’ (Straley 1977) or dielectric constant exponent, s, and the
geometrical exponents y and v for lattices in 2D and 3p. In all of these studies, the
electrical network consisted of resistive elements chosen from a bimodal distribution.
This letter treats a network composed of bonds which are either purely resistive or
purely capacitative. Thus the Ac response of this lattice models the dielectric response
of a composite medium in which conducting elements have been embedded in an
insulator.

Anomalous behaviour of the Ac conductivity near percolation threshold is a subject
of recent interest; in contrast, anomalous DC conductivity as p- p. has long been
recognised. Above p., the conductivity of a system of finite (probability p) and infinite
(probability 1 — p) resistances scales as £~ (p — p.)* (Kirkpatrick 1971, Last and Thou-
less 1971, Webman et al 1975). A homogeneous function representation of the conduc-
tivity of a mixture with conductivities o, and o, was previously suggested by Straley
(Straley 1976, Webman et al 1977a). With f. a scaling function which has different
asymptotic values above and below p, for different extremes of its argument this relation
reads

= 0'1|P “Pcl‘f:[(az/al)lp —Pcl_('+s)]_

Among the many consequences of this relation is that, upon analytic continuation of
oy, the static dielectric constant of the composite is seen to scale as ¢ ~ | p — p|~* (Efros
and Shklovskii 1976, Webman et al 1977b, Stroud and Bergman 1982). Straley’s relation
provides predictions concerning the system’s response to an AC source if we explicitly
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substitute o, - o, +iwCy. In the simple case of a resistor/capacitor mixture o, - o,
and o,- iwC, and one writes the complex admittivity, £, as (Luck 1985)

S =ao|p—pl'fuliw/wo)| p—pcl '] (1)

when p - pZ and @ € wy, where wo= 0/ Cy. Equation (1) will produce the conventional
limiting forms discussed above:

T~ayp—p) S~ay(p.—p)”* for p- pZ, p<, respectively
e~ Colp—pd~* for p > p

‘(x+s)

for frequencies much less than the crossover frequency w*= wol p — Pe . For w*«

w < w, one has an anomalous scaling of the admittivity with frequency:
2 ~0gpe""*(w/wg)" (2)

where u=t/t+s. Equation (2) immediately suggests that anomalous scaling may be
observable in the loss tangent (Clerc et al 1984). It has also been predicted in the
noise properties (Rammal 1984) of a system near p..

Experimental evidence for anomalous scaling of the complex admittance with
frequency has recently been presented (Leibowitz and Gefen 1984, Bhattacharya et al
1985, van Dijk 1985, Niklasson and Grangvist 1985). It should be noted that only in
the case of Niklasson and Granqvist did the measured values of the exponents conform
to theory for the response of a continuous ohmic dielectric medium embedded in a
given dimensionality. (Recent values of exponents for Ac response and noise are
surnmarised in Luck (1985).)

Our method is a simple extension of the method described in Derrida and Van-
nimenus (1982). As is drawn in their figure 1, one generates a strip of arbitrary length
and finite width, M +1 say, by adding strips of unit length and width M +1 to the
edge of an existing strip. Each new strip consists of a set of M +1 horizontal and M
vertical bonds. The admittance of each bond is 1 with probability p and iw with
probability 1 —p. The new strip is added so as to continue the construction of a square
lattice from the existing strip. The top and bottom horizontal elements of the new
strip are always given zero resistance. They form a superconducting path across the
strip and thus one calculates a line to line admittance with this method. If one applies
external currents only at the nodes at the growing edge of the strip and labels these
nodes with a vector index i with 1=<i= M +1, then the voltages at these points are
linearly related to the currents via an (M +1)x (M + 1) matrix:

Vi I,

=An{ | (3)
Vit Ingiy

The basic idea behind the transfer matrix is that if Ay is known for a strip of length
N, ANH can be calculated exactly in terms of AN and the 2M + 1 new circuit elements.
If the ith new horizontal resistor has conductance h; and the ith new vertical resistor
has conductance g;, then the recursion relation is

Ano=[(A7'+Ay) '+ 6] (4)
where

h;'=1/hs;

éﬁ_—gl 181 1_;+(gx l+gl)89 gx i+1,j°
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Figure 1. Log-log plot of loss tangent (Re 2/Im X) against frequency for strips of various
widths M at p.. In a range of frequencies centred about wy =1 the loss tangent becomes
frequency independent. Its value in that range is unity, which implies that ¢ =s. Widths:
+,9; 0, 19; x, 29; A, 39.

If a current I is applied at the (M + 1)th node and removed from the first node, then
Ohm’s law reads

ZN(VM-H_VI):I (5)

where X is the admittance of the strip of length N. Substituting I, =—1I,=1, and
all other I, =0 in equation (3), we find that the complex admittance per unit length
of the strip is simply

SN/ N=NTAN) mm+ (A1 = (AN)m1 = (AN 1m]7h (6)

This quantity, multiplied by the width M, is expected to converge to the admittance
of a nework of M X M bonds in the limit as N > c©. (In 2D, admittance and admittivity
are equivalent.)

In the limit @ =0, there is no imaginary component of the admittivity and we
calculate the pc conductivity for unit resistors mixed with infinite resistors at p.. The
calculation is carried out precisely at p. =} and finite-size scaling arguments determine
the exponent t/ v via (Mitescu et al 1982)

I~M" (7)

That is, the width of the system determines an effective value of (p—p.) which is
non-zero and scales as M~"*. Critical quantities (such as w*) are determined with
respect to this effective distance from the critical point. Strips of width M +1=8§, 10,
20, 30 and 40 with lengths of order 10°-10° were generated. These lengths were sufficient
to give asymptotic values of 2/ N; this was also the range of strip lengths found to
be sufficient by Derrida and Vannimenus (1982). Our results for  were found to agree
with those of their figure 2 to within the cited accuracy; we find that ¢/ » =0.96+0.01.
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Figure 2. (a) Scaled conductivity, 3'= 3 M ~*/*, against logarithm of the scaled frequency,
w'=w/M"** (b) Scaled dielectric constant, we’=weM */*, against logarithm of
scaled frequency as in (a). Scaled variables are suggested by equation (9) with t=s=1.3.
Universal behaviour should hold for w » «* (see text). Smaller insets are complete data
sets. Larger plots are small frequency data with expanded vertical scale to show the
breakdown of scaling near w* (for widths see figure 1),

Data for the response to a non-zero driving frequency are displayed in figure 1.
The loss tangent, Re X/Im 3 = tan 8, where 8(w) is the loss angle. Equation (2) predicts
that the loss angle becomes frequency independent in a critical range between w™ and
wo where it takes on the value

S5.=ms/2(t+s). (8)

For our system, w, is unity. In 2D, the well known duality relation t = s (Straley 1977)
implies that 8. = #/4. Thus the loss tangent should become unity in the critical range;
figure 1 displays this behaviour.

Beyond the critical range, there must exist crossovers to values of the loss tangent
which are dictated by analyticity properties of the complex admittivity. For high
frequencies (Luck 1985) this behaviour is tan 8 ~ w " if the capacitative phase perco-
lates and tan & ~ w if it does not. The infinite square bond lattice with p. =1 s a special
case in which a special high frequency crossover is expected. A very high frequency
crossover scale w** ~ wo|p — p|"“**’ is set by duality, which demands that tan §(w) =
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tan”' 8(1/w). This self-dual lattice really demands a scaling form for the admittance
which includes a two-argument scaling function: g(w/w*, o/w**). However, w*~
1/o™** and their difference diverges as p—> p.. Thus we can split the scaling law for &
into two laws; each one holds in the vicinity of its characteristic crossover frequency.

Figure 2 displays the real and imaginary parts of the admittivity scaled according
to the law

3~ Mg [w/ M) ©)

By finite-size scaling M ~ (p — p.) ™", so data for various widths should fall on the same
universal curve above and below the crossover frequency w**. This is borne out well
in figure 2; equation (9) describes the critical region and the vicinity of the high
frequency crossover w**. Further, equation (9) must fail in the vicinity of w*. For
these frequencies, therefore, the data of figure 2 should and do leave the scaling curve.
The crossover frequency at which this occurs is w*; this is checked by plotting the
data in figure 3, as discussed in the next paragraph.
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Figure 3. (@) Scaled conductivity, T'= ZM"", against logarithm of the scaled frequency,
w'=wM"** (b) Scaled dielectric constant, we’= weM'/*, against logarithm of scaled
frequency as in (a). Scaled variables are suggested by equation (10) with t=s=1.3.
Universal behaviour should hold for w « w** (see text). Smalier insets are complete data
sets. Larger plots are small frequency data with expanded vertical scale to show the onset
of scaling behaviour far below w** (for widths see figure 1).
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At low frequencies, the admittance of the capacitors goes to zero with w, and the
behaviour of tan § depends on whether or not the system is above or below p.. One
expects the loss tangent to vanish as  if p<p., and to diverge as w ™' if p> p, for
w<« w* In fact, since our calculation takes place on a finite lattice, one is always
above p, for the resistors and thus one expects the latter behaviour. This low frequency
behaviour is seen in figure 1. The scaling law dual to equation (9) which successfully
describes this crossover is

S~M g loM], (10)

Admittance data scaled according to equation (10) are plotted in figure 3. As claimed,
the data scale well for frequencies below the lower crossover frequency w* and above
it in the critical regime. For frequencies above w™*, equation (10) fails as expected,
and scaling behaviour is described by equation (9) and figure 2. The crossover frequency
at which this occurs is @**. This is confirmed by the adherence of the data of figure
2 to a universal scaling function for frequencies far above w*.

In conclusion, we have used a transfer matrix method to extract the anomalous
frequency dependence of the AcC response of a 2D network of conductors and insulators
near p.. The results confirm the predictions of the traditional scaling theory.

The authors gratefully acknowledge conversations with Y Gefen, S Safran and R Voss.

Note added. After this manuscript was submitted, we were made aware of a preprint by J M Laugier, J P
Clere, G Giraud and J M Luck, which also treats the AC response of a percolation model in two dimensions
via a transfer matrix.
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