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LETI'ER TO THE EDITOR 

AC response near percolation threshold: transfer matrix 
calculation in 2~ 

A L R Bugt, G S Grestt, M H Cohent and I WebmanS9 
t Corporate Research Science Laboratory, Exxon Research and Engineering CO, Annan- 
dale, NJ 08801, USA 
$ Department of Physics, Rutgers University, New Brunswick, NJ 08903, USA 

Received 31 December 1985 

Abstract. The complex admittivity of a network of resistors and capacitors is calculated 
at pc  on a square lattice using a transfer matrix. The loss tangent shows a region of 
anomalous frequency scaling, with t = s. Finite-size scaling reveals two crossover frequen- 
cies, as expected from duality. 

This letter describes an application of the transfer matrix method to calculating the 
complex impedance of an electrical network near its percolation threshold. A transfer 
matrix was previously used to calculate the static (DC) conductance of a resistor 
network by Derrida and Vannimenus (1982). Subsequent applications followed 
(Herrmann et a1 1984, Zabolitzky 1984, Saleur and Derrida 1985). These determined 
the 'superconductivity' (Straley 1977) or dielectric constant exponent, s, and the 
geometrical exponents y and v for lattices in 2~ and 3 ~ .  In all of these studies, the 
electrical network consisted of resistive elements chosen from a bimodal distribution. 
This letter treats a network composed of bonds which are either purely resistive or 
purely capacitative. Thus the AC response of this lattice models the dielectric response 
of a composite medium in which conducting elements have been embedded in an 
insulator. 

Anomalous behaviour of the AC conductivity near percolation threshold is a subject 
of recent interest; in contrast, anomalous DC conductivity as p + p c  has long been 
recognised. Above p c ,  the conductivity of a system of finite (probability p) and infinite 
(probability 1 - p )  resistances scales as 8- ( p  -pc)r (Kirkpatrick 1971, Last and Thou- 
less 1971, Webman et a1 1975). A homogeneous function representation of the conduc- 
tivity of a mixture with conductivities U, and u2 was previously suggested by Straley 
(Straley 1976, Webman et a1 1977a). With f+ a scaling function which has different 
asymptotic values above and below p c  for different extremes of its argument this relation 
reads 

= u11p -pcl%[(u2/ul)lp -pcl-('+s)l. 

Among the many consequences of this relation is that, upon analytic continuation of 
U,, the static dielectric constant of the composite is seen to scale as E - Ip -pel-' (Efros 
and Shklovskii 1976, Webman et a1 1977b, Stroud and Bergman 1982). Straley's relation 
provides predictions concerning the system's response to an AC source if we explicitly 
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substitute (Tk  + c k  + i d k .  In the simple case of a resistor/capacitor mixture u1 + uo 
and uz+ iwCo and one writes the complex admittivity, Z, as (Luck 1985) 

(1) x = uolP -Pcl%[(iw/wo)lP -Pcl-('+s)l 

when p + p :  and OJ <c w o ,  where wo = uo/ Co. Equation (1)  will produce the conventional 
limiting forms discussed above: 

z- dO(p - P J f  x - - o ( P C - P ) r s  for p + p: ,  p i ,  respectively 

E - ColP-Pcl-" for p + p :  

for frequencies much less than the crossover frequency U * =  wolp - ~ ~ l ( ' + ~ ) .  For U*<< 

w << wo one has an anomalous scaling of the admittivity with frequency: 

x - go e''=/' ( W / W O ) "  ( 2 )  

where U = t /  t + s. Equation ( 2 )  immediately suggests that anomalous scaling may be 
observable in the loss tangent (Clerc er a1 1984). It has also been predicted in the 
noise properties (Rammal 1984) of a system near pc. 

Experimental evidence for anomalous scaling of the complex admittance with 
frequency has recently been presented (Leibowitz and Gefen 1984, Bhattacharya er a1 
1985, van Dijk 1985, Niklasson and Granqvist 1985). It should be noted that only in 
the case of Niklasson and Granqvist did the measured values of the exponents conform 
to theory for the response of a continuous ohmic dielectric medium embedded in a 
given dimensionality. (Recent values of exponents for AC response and noise are 
summarised in Luck (1985)) 

Our method is a simple extension of the method described in Derrida and Van- 
nimenus (1982). As is drawn in their figure 1, one generates a strip of arbitrary length 
and finite width, M + 1 say, by adding strips of unit length and width M + 1 to the 
edge of an existing strip. Each new strip consists of a set of M + 1 horizontal and M 
vertical bonds. The admittance of each bond is 1 with probability p and iw with 
probability 1 - p .  The new strip is added so as to continue the construction of a square 
lattice from the existing strip. The top and bottom horizontal elements of the new 
strip are always given zero resistance. They form a superconducting path across the 
strip and thus one calculates a line to line admittance with this method. If one applies 
external currents only at the nodes at the growing edge of the strip and labels these 
nodes with a vector index i with 1 S i S M + 1, then the voltages at these points are 
linearly related to the currents via an ( M  + 1) x ( M  + 1 )  matrix: 

The basic idea behind the transfer matrix is that if A, is known for a strip of length 
N, A,+, can be calculated exactly in terms of AN and the 2M + 1 new circuit elements. 
If the ith new horizontal resistor has conductance hi and the ith new vertical resistor 
has conductance g,, then the recursion relation is 

where 
A N + I  = [(l-'+ AN)-'+ 61-l (4) 

= l /hiS, 

G,,= -g 1-1 6 t - l , J  '(gZ-1'gt)'iJ -gi6i+l,J* 
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Figure 1. Log-log plot of loss tangent (Re P/Im 2) against frequency for strips of various 
widths M at p , .  In a range of frequencies centred about wo = 1 the loss tangent becomes 
frequency independent. Its value in that range is unity, which implies that I = s. Widths: 
+, 9; 0, 19; X ,  29; A, 39. 

If a current I is applied at the ( M  + 1)th node and removed from the first node, then 
Ohm’s law reads 

EN( VM,, - Vl)  = I ( 5 )  

where Z,,, is the admittance of the strip of length N. Substituting IM+l = - I l  = I, and 
all other Ik = 0 in equation (3), we find that the complex admittance per unit length 
of the strip is simply 

Z N /  = N - ’ [ ( A N )  mm + (AN ) 1 1  - ( A N  ) m l -  ( A N  11 m I-’. ( 6 )  

This quantity, multiplied by the width M, is expected to converge to the admittance 
of a nework of M x M bonds in the limit as N + 00. (In 2 ~ ,  admittance and admittivity 
are equivalent.) 

In the limit w = 0, there is no imaginary component of the admittivity and we 
calculate the DC conductivity for unit resistors mixed with infinite resistors at p c .  The 
calculation is carried out precisely at p c  = f and finite-size scaling arguments determine 
the exponent t /  Y via (Mitescu et a1 1982) 

(7)  - M-*l”.  

That is, the width of the system determines an effective value of ( p - p c )  which is 
non-zero and scales as M - ’ / ” .  Critical quantities (such as U*) are determined with 
respect to this effective distance from the critical point. Strips of width M + 1 = 8, 10, 
20,30 and 40 with lengths of order 105-106 were generated. These lengths were sufficient 
to give asymptotic values of Z N / N ;  this was also the range of strip lengths found to 
be sufficient by Derrida and Vannimenus (1982). Our results for Z were found to agree 
with those of their figure 2 to within the cited accuracy; we find that t /  v -0.96*0.01. 
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Figure 2. ( a )  Scaled conductivity, Z’= ZM-”“, against logarithm of the scaled frequency, 
W / M ( t + s ) / Y ,  (b)  Scaled dielectric constant, W E ‘ =  OEM-””,  against logarithm of 

scaled frequency as in (a). Scaled variables are suggested by equation (9) with t = s = 1.3. 
Universal behaviour should hold for w >> w *  (see text). Smaller insets are complete data 
sets. Larger plots are small frequency data with expanded vertical scale to show the 
breakdown of scaling near U *  (for widths see figure 1). 

0.03 

0.02 - 
W E ’  

Data for the response to a non-zero driving frequency are displayed in figure 1. 
The loss tangent, Re X/Im B = tan 8, where S ( w )  is the loss angle. Equation (2) predicts 
that the loss angle becomes frequency independent in a critical range between w *  and 
wo where it takes on the value 

6, = 7rs/2( t + s). (8) 

For our system, wo is unity. In 2 ~ ,  the well known duality relation t = s (Straley 1977) 
implies that 6, = r / 4 .  Thus the loss tangent should become unity in the critical range; 
figure 1 displays this behaviour. 

Beyond the critical range, there must exist crossovers to values of the loss tangent 
which are dictated by analyticity properties of the complex admittivity. For high 
frequencies (Luck 1985) this behaviour is tan S - w- l  if the capacitative phase perco- 
lates and tan S - w if it does not. The infinite square bond lattice with pc = f is a special 
case in which a special high frequency crossover is expected. A very high frequency 
crossover scale U** - woIp -pcl-(*+s) is set by duality, which demands that tan S ( w )  = 

e 0 6‘ 
( b l  

+ d 

b -  

A ! 
2 -  r 
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tan-’ S(  l / w ) .  This self-dual lattice really demands a scaling form for the admittance 
which includes a two-argument scaling function: g ( w / w * ,  w / w * * ) .  However, w* - 
l / w * *  and their difference diverges as p + p c .  Thus we can split the scaling law for Z 
into two laws; each one holds in the vicinity of its characteristic crossover frequency. 

Figure 2 displays the real and imaginary parts of the admittivity scaled according 
to the law 

x - MS’”g, [w/M(‘+s) ’”] .  (9) 

By finite-size scaling M - ( p  -pc ) -” ,  so data for various widths should fall on the same 
universal curve above and below the crossover frequency U**.  This is bome out well 
in figure 2; equation (9) describes the critical region and the vicinity of the high 
frequency crossover U**.  Further, equation (9) must fail in the vicinity of U * .  For 
these frequencies, therefore, the data of figure 2 should and do leave the scaling curve. 
The crossover frequency at which this occurs is U * ;  this is checked by plotting the 
data in figure 3, as discussed in the next paragraph. 
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At low frequencies, the admittance of the capacitors goes to zero with w, and the 
behaviour of tan S depends on whether or not the system is above or below p c .  One 
expects the loss tangent to vanish as w if p <pc ,  and to diverge as w-' if p > p c  for 
w <c w * .  In fact, since our calculation takes place on a finite lattice, one is always 
above p c  for the resistors and thus one expects the latter behaviour. This low frequency 
behaviour is seen in figure 1. The scaling law dual to equation (9) which successfully 
describes this crossover is 

Admittance data scaled according to equation (IO) are plotted in figure 3. As claimed, 
the data scale well for frequencies below the lower crossover frequency w *  and above 
it in the critical regime. For frequencies above w * * ,  equation (10) fails as expected, 
and scaling behaviour is described by equation (9) and figure 2. The crossover frequency 
at which this occurs is U** .  This is confirmed by the adherence of the data of figure 
2 to a universal scaling function for frequencies far above w * .  

In conclusion, we have used a transfer matrix method to extract the anomalous 
frequency dependence of the AC response of a 2~ network of conductors and insulators 
near p c .  The results confirm the predictions of the traditional scaling theory. 

The authors gratefully acknowledge conversations with Y Gefen, S Safran and R Voss. 

Note added. After this manuscript was submitted, we were made aware of a preprint by J M Laugier, J P 
Clerc, G Giraud and J M Luck, which also treats the AC response of a percolation model in two dimensions 
via a transfer matrix. 
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